
© 2014 David McGoveran – All Rights Reserved Page 1

Confusing Physcal and Logical Levels of Abstraction

Correspondence Between David McGoveran and Jim Starkey, April-May, 2014

In April, 2014, Jim Starkey posted a commentary "Is the Relational Data Model Spent?" on the

Database Architect's Forum of LinkedIn. I was sent a copy of the post by Fabian Pascal, a

member of the forum. Choosing not to join the forum in order to respond, Jim and I

communicated via postings on Fabian's blog www.dbdebunk.com with two rounds each. The

correspondence follows, in order of its appearance and as it appeared, spelling errors and all. I

have taken the liberty of improving formatting for readability. I have assumed that, since Jim's

commentary was public and not copyrighted (I have added a notice on his behalf herein), that it

is fair use to include it herein. Of course, if Jim ever has any objection I will be happy to remove

his portion of the correspondence and expand my commentary to so as to explain what he posted

without including it.

Is the Relational Data Model Spent?
by Jim Starkey, Database Architect

© 2014 Jim Starkey – All Rights Reserved

Let me start by establishing my relational credentials. My first exposure to relational databases

was some mimeographed copies of Codd’s early papers while working the ARPAnet

Datacomputer project. I was unable to convince the company I worked for that relational was the

future (“too academic”). I joined DEC to write a relational database, but got sidelined by a hiring

bait and switch. I did start the DEC Rdb project, but had to spin off due other other

responsibilities. Later, after I had the MVCC idea, I wrote Rdb/ELN, the world’s first MVCC

relational database. I left DEC to start my first relational database company, Interbase Software,

acquired by Ashton Tate, in turn acquired by Borland. (Interbase lives on as the Firebird

RDBMS.) After waiting out a non-compete, I wrote an integrated Web application platform with

an embedded relational database system that was acquired by MySQL to become the Falcon

storage engine. While at MySQL, I had the idea for a radically new architecture for an elastically

scalable database. After Sun acquired MySQL, I left and started what is now NuoDB.

In short, having written four or five commercial relational database systems over 35 years, I

think I know at least as much about the relational data model as the average bear.

Along the way, I’ve come to understand applications often succeed despite the relational data

model and not because of it. In other words, database schemas frequently reflect pragmatic

implementation concerns rather than any rational model of data. Some common examples of this:

© 2014 David McGoveran – All Rights Reserved Page 2

 High end applications tend to use generic schemas and a layer to map logical tables into

physical tables.

 If the set of table attributes is unknowable at design time, a logical table must be represented

with a base table and separate attribute/value table.

 Partitioned database systems that impose catastrophic performance penalties for cross-

partition transactions inspiring schemas that Fabian could never love.

 Many applications include tables with hundreds or even thousands of columns, almost all of

which will be null for any given row instance.

 Technologies like Hibernate produce garbage schemas with no face validity.

The common denominator of these cases is that creative people are using relational database

systems to work around the deficiencies of the relational data model.

I’m not going to suggest we throw out the relational model or relational database systems. They

work well for many applications and adequately for many more. But isn’t it time to start looking

beyond a methodology that was designed for computing systems with less processing power,

memory, and connectivity than modern home thermostats?

We need a new data model more flexible and powerful than the relational data model, one that

recognizes that humans are data pack rats, that acknowledges that the Web requires very

complex retrievals with a single round-trip latency requirement, that most of human knowledge

can’t be represented in rows and columns, and that unrestricted context-free search has

broadened the scope of human information gathering far beyond what we thought possible a

couple of decades ago.

I submit that the relational model drove us forward for 25 years, but is obsolete and retarding

progress. It has good things like ACID transactions and link-by-common-value and bad things

like bounded types and outer join. Let’s ditch schemas and tables and let every record contain

whatever it needs to contain. Let’s have an access language that can return arbitrarily complex

results in a single round trip. Let’s index almost everything by default so we can support high

performance context-free searches by word or phrase while still supporting attribute-specific

searches. Let's treat the size of data as a logical constraint, where necessary, but not require the

designer to know the size of everything in advance.

© 2014 David McGoveran – All Rights Reserved Page 3

Comments on Jim Starkey's "Is the Relational Data Model

Spent?"1

by David McGoveran, April 23
rd

 2014

© 2014 David McGoveran – All Rights Reserved

Jim Starkey's opinions reflect those of many professionals who have used and even developed

SQL DBMSs and their predecessors. While the concerns with so-called "commercial relational

database systems" expressed by Jim are valid, they have nothing to do with the relational (data)

model. They are the result of DBMS implementations by those who borrowed something from

the relational model, but never understood it and so did not know how to take advantage of it to

solve application problems.

Jim Starkey employed important and useful features in both Rdb/ELN and Interbase, and

deserves credit for having done so. I met Jim long ago in the early 1980s. I was an early

developer using DEC's Datatrieve while Jim was working on that product, designed and

developed one of the first large scale commercial applications that ultimately used the first

versions of Interbase (I had designed it run on the Britton-Lee Intelligent Database Machine),

was an early user of Rdb (when its primary query language was the subverting CODASYL

Datatrieve in 1984-1985!), was the consultant who first trained DEC engineers on the relational

model and products in the "relational DBMS" category, and wrote/published detailed critical

technical evaluations of both Rdb and Interbase (among many others).

The problem we face is this: Relational terminology was hijacked long ago and used for the

wrong purposes. Personally, I've come to believe it is now impossible to overcome the confused

thinking, miss-education, and miscommunication this hijacking caused. The 'Relational Data

Model' of Jim's title is spent because the referent is not The Relational Data Model. Herein I will

use RDM (for "The Relational Data Model") to refer to the logical data model that resulted from

the work of Dr. E. F. Codd and his colleagues and adherents. I will use "alleged relational" for

whatever it is that guides the design and development of everything else that pretends to be a

relational product, including SQL and many other commercial DBMSs and the fuzzy concepts

that, for example, NoSQL champions attack and allege as being "relational."

What is "spent" is a set of simplistic, highly-constrained physical data storage and retrieval

techniques that have jointly been labeled as "relational". For example, RDM was never intended

to constrain physical data storage to sets of contiguous rows as records having columns as

fields.
2
 It was intended to hide physical storage organization and access methods from

programmers, allowing them to be changed transparently. As someone who has designed,

developed, analyzed, and optimized hundreds of database applications in a variety of

1
 Posted on LinkedIn's Database Architects Group and sent to me by Fabian Pascal

2
 If this statement puzzles you, I recommend a lot of reading on foundations of the relational model.

© 2014 David McGoveran – All Rights Reserved Page 4

programming languages from FORTRAN and COBOL to Java and C++, I'm very familiar with

the problems (and perceived problems) that developers face when using commercial DBMSs.

I've worked on the bleeding edge of applications throughout my professional career, including

real-time machine control, OLTP, workflow, decision support/BI/data warehouse, analytics and

OLAP, integration, business process, text, image, video, voice, web, search engine, and cloud

applications (and probably more I can't think of off the cuff). As a teacher of both college and

industrial courses on these subjects, I also know how hard it is for developers to learn

abstraction. The natural inclination is to think physically – from conception through deployment

and maintenance. To suggest that RDM (taking liberties with Jim's reference to it as a

"methodology") was designed for computing systems with any amount of processing power,

memory, or connectivity is a complete misrepresentation of RDM history and Codd's intent.

RDM is and has always been about the abstract representation of data, data structure, data

relationships and data operations.

So let me drive the point home: The bulleted problems that Jim states are limitations of a

simplistic, highly constrained physical data storage and retrieval model. Over the years I (and

others) have written and lectured extensively over the difference between conceptual, logical and

physical. Codd is largely responsible for starting that effort, being the first to clearly exhibit a

logical data model. Those efforts did not take root. Logical concepts like RDM and physical

characteristics like performance, allocation, concurrency, locking, and availability are treated as

if they belonged to the same conversation.

When you talk about physical tables, physical "attributes", partitioning, performance, nulls (as

physical placeholders), latency, or the utility or "validity" of a product like Hibernate, the context

is physical and cannot be logical. True, if what you achieve physically with your application is

constrained by a logical model that is weaker than the physical implementation platform (a

computer with a particular operating system) on which your application runs, you may lack the

flexibility to achieve some physical objective. However, that is not and cannot be the case with

RDM. RDM is an expression of first order predicate logic (with equivalence) or "FPL". In terms

of expressive power, FPL with arithmetic is more powerful than a Turing machine that is limited

to expressions over finite sets and modern computers performing real computations are such

Turing machines.
3
 It follows that RDM cannot limit what you can achieve on a modern

computer.
4
 At worst, RDM can limit the way in which you express what you want to achieve.

Jim's statement that most of human knowledge can't be represented in terms of rows and columns

is just nonsense. Rows, comprised of some number n of typed attributes, correspond to first order

n-place predicates which, when specific values are substituted, result in logical propositions. The

types of the attributes (i.e., their domains) and the relationships (i.e., constraints) among the

attributes provide the semantics (i.e., the intended meaning or interpretation) of the proposition.

3
 There are many subtleties in this comparison which I will not go into as they are of no consequence to our subject.

4
 Certain computations on finite sets, such as transitive closure, require extensions of the original relational

operators, but these types of problems are not in general computable in a decidable language.

© 2014 David McGoveran – All Rights Reserved Page 5

Nothing in RDM limits the simplicity or complexity of those semantics. While there are

expressions that are not first order, I challenge Jim to identify one statement of human

knowledge that cannot be represented as an n-place predicate
5
.

None of a specific implementation of data types, transaction model, indexing, data sizes, and so

on are limitations of RDM. I do agree that outer join is a bad thing, as is outer union or any other

"relational" operation that permits, let alone produces SQL-like nulls in its output
6
.

Regarding performance (both response time and throughput), concurrency, and storage

efficiency, I have always found these complaints to be the product of the rigid thinking or ill-

informed. During the 1980s and 1990s I had a standing challenge to the industry: show me a

relational database application that I cannot optimize to yield 10x better performance, 10x higher

concurrency, and with 10x less storage and my consulting is free. I had numerous takers and no

winners.

With respect to data types, a flexible type system based on a rigorous theory of types is needed

for programming languages as badly as for database languages. Date and Darwen have published

a proposal on the latter problem
7
. Curiously, the problem of transactions can be handled by

RDM's logical data independence: If transactional transformation T acting on an RDM-

conformant database D results in database D', there exists a derived relation (e.g., a view) and an

update of that derived relation such that D transforms to D'.

In conclusion, I do agree that we need to abandon the onerous limitations and outright errors that

have been perpetuated in the name of RDM by implementers of alleged relational DBMSs. But

let's not keep falsely accusing RDM as the culprit. The culprit is those who do not understand

how to differentiate between conceptual, logical and physical levels of abstraction. Perhaps we

relational "bigots" need to invent new terminology, letting our frustrated colleagues have the old

terminology to use however they wish. On the other hand, I do object to characterizing

something as "logical" or a "model" that has no discipline, no logic, and no underlying theory.

Imagine an architect of skyscrapers that took that approach – you won't catch me entering his

buildings! And Jim, I apologize, but if he is a database architect, I would never rely on his

applications for anything critical – they would be likely to get someone seriously hurt.

5
 Even paradoxes and other non-first order expressions can still be given as n-place predicates.

6
 To evade a foreseen complaint here, let me point out that (a) Codd's marks were not equivalent to SQL nulls and

(b) we have made progress since Codd in improving and extending RDM concepts and theory.
7
 My own work on this problem is, sadly, still forthcoming.

© 2014 David McGoveran – All Rights Reserved Page 6

Reply to "Comments on Jim Starkey's
'Is the Relational Data Model Spent?'"

by Jim Starkey, Database Architect

© 2014 Jim Starkey – All Rights Reserved

The article is well worth reading, a welcome break from the insulting, content-free snears from

the RDM camp.

David challenges me to name one aspect of human knowledge that can't be represented in rows

and columns. Fair enough. David, your article itself is an excellent example of something that

can't be represented -- and found -- with a row and column representation. True (he said patting

himself on the back), it can be represented as a BLOB and on some systems even an HTML

structured blob. But it can't be searched with first order predicate logic.

Personally, I'm a fan of first order predicate logic. Who isn't? It's the fundamental language of

mathematics. I'm sure it wasn't lost of David that the Datatrieve language was, indeed, first order

predicate logic extended with sufficient (and optional) syntactic sugar to be English-like. I was

very pleased with the degree that the language was accepted by people ranging from

mathematicians and researchers to secretaries (who, more than often, found they had, in fact,

found new careers as programmers).

The problem with first order predicate logical is that each predicate in a full expression must

resolve to either true or false (let's ignore nulls). Word search can't be expressed in first order

predicate logical. If you search for the phrase "first order predicate logical", you're going a rather

fuzzy search for documents that contain words in that phrase. And, unlike first order predicate

logic, the application of the search phrase to a specific document isn't true or false but a "hit

score" where a document containing those words in order without intervening words will be

scored the highest (and ranked among other such has by the relative position of the phrase in the

document). At the bottom are documents that containing at most one of the words. It's logic,

David, it just isn't first order predicate logic.

David say, "Nothing in RDM limits the simplicity or complexity of those semantics." I

respectively disagree. Restricting a data model to first order predicate logic denies the fact that

the most successful computing company in mankind's history, Google, is based on search, not

first order predicate logic.

How is this possible? The answer, I'm afraid, is that the database community, especially the

academic database community, suffers from a profound case of Head in Sand Syndrome (HISS),

which can be paraphrased, "if it wasn't in my CS 101 class, it doesn't exist."

© 2014 David McGoveran – All Rights Reserved Page 7

David, you write well and are clearly a decent and thoughtful fellow. Pull your head out of the

sand. First order predicate logic is not the be all and end all of human thinking. And, not

incidentally, first order predicate logic is not restrict to sets.

[Of course Amorphous uses first order predicate logic, Duh. It also implements weighted hit

search semantics and user control over the fuzziness in between.]

© 2014 David McGoveran – All Rights Reserved Page 8

Response to Jim Starkey's Comments on Predicate Logic and

Data Modeling8

by David McGoveran, May 5
th

 2014

© 2014 David McGoveran – All Rights Reserved

Jim Starkey's reply to my April 23
rd

 2014 "Comments on …" perpetuates the initial mistake I

pointed out: confusing a physical data storage and retrieval techniques with RDM. With respect,

Jim makes at least the following errors in his reply:

1. Jim says my article can't be represented in rows and columns – I'll assume he means RDM

tuples and attributes, and not the physical records and fields he and so many others used to

implemented some "alleged relational" but in fact physical data store. His is a categorical

statement, presuming that my article comprises knowledge of some specific sort (smile). And

it's wrong. Seriously, part of the "problem" Jim confronts is that he doesn't know what kind

or level of knowledge he wants to model about my article or its content. Until he does, there

are just too many possibilities. Documents have lots of content, lots of metadata, lots of

interpretations, and lots of internal relationships (formatting, semantic, structural or syntactic,

and so on). At one level, they are just documents. At another level of analysis, they have

subject matter or content that might relate to that of other data – for example – documents.

How we represent knowledge, and in how much detail, always partially determines the class

of queries we can express.

At the simplest level, RDM can represent the fact that I wrote the article and on what date

with a relation - Writings (Author, Article_Title, Date_Written). If we want to go further, for

example, a domain of type "pdf_document" with PDF operators could be created and then the

article itself represented in the relation – Writings(Author, Article_Title, Date_Written,

Content).
9
 This is no more complex than a relation with a text domain type and could

implement document "substring" functions similar to text substring functions with which

everyone is familiar. Notice that I've adhered to the use of typed domains – no truly untyped

BLOBs here thank you!
10

 If we want to, we could design a data model of the grammatical

structure of the document showing the relationships among content such as chapters,

sections, paragraphs, sentences, noun phrases, verb phrases, and so on. If we wanted to

8
 Posted on LinkedIn's Database Architects Group and sent to me by Fabian Pascal

9
 Can you, the reader, think of one or more reasonable predicates corresponding to each of these relations? You don't

need to give a precise expression, just rough it out. Its easy!
10

 I'm alluding to the fact that RDM is based on typed FPL: Every domain has a type with a well-defined,

computable set membership function (possibly a lookup function referencing some other set).

© 2014 David McGoveran – All Rights Reserved Page 9

analyze the content, we could – again for example – assign subject matter keywords to each

of these structural elements. Logical models at these levels comprise multiple relations.
11

The problem with documents (or any arbitrary content) is not that the knowledge (useful

facts) contained therein cannot be given a representation in RDM, it is that data modelers

choose not to analyze them. Documents are not "unstructured" – rather, they are very highly

structured and come in many types. Few implementers are willing to take the time to model

their content, often because of resource constraints but sometimes out of ignorance about

how to use RDM.

All too often the asserted and actual needs of those who complain about RDM are not about

knowledge representation, but knowledge discovery. That is the problem, for example, that

Google Search attempts to solve. Likewise, many so-called analytics and data integration

application objectives face this problem. It's an expensive, imprecise, and difficult problem.

2. Jim says my article can't be searched in first order predicate logic (FPL herein). His

statement is no more true than if he were to say that a text data type can't be searched in FPL.

At least, the assertion is not relevant.
12

 All that matters is that the query expression does not

contain a predicate variable that ranges over predicate variables. Both tasks are easily

accomplished, as is clearly demonstrated by the common use of a substring search function

operating on an attribute defined over a text domain.

When a domain operator is used to evaluate an attribute value or to perform type

conversions,
13

 RDM does not permit any higher ordered logic of the domain operator to be

exposed to the relational (and FPL) query language. This guarantees that RDM need not

impose any restrictions on how the domain operator is defined: Its expressions can belong to

any logical system (second order PL, third order PL, fuzzy, etc.) as long as they are well-

defined and always yield properly typed results.

In RDM, the declarative, relational operators do not have direct access to and so can never be

directly combined with the expression necessary to define domain operators, only the

operator's typed results (values!). Understanding this domain-based encapsulation of higher

ordered expressions is essential to understanding and using the power of RDM. It is why

11

 I won't give an example here – I just don't have the time to teach what would require an entire course in data

modeling.
12

 It is true that, if you tried to "flatten" the query expression so that domain operations were forced to be expressed

in FPL, that the resulting expression would not be FPL. However, RDM does not require such flattening and, in fact,

forbids it.
13

 Technically, these are subtype to subtype conversions and the operator must belong to a domain that is a

supertype of both subtypes. SQL (and most other languages) get this wrong – one reason I consider their informal

and implicit type system so bad.

© 2014 David McGoveran – All Rights Reserved Page 10

domains and the typed attributes based on them are described as "atomic" in RDM – not

because the data type must be "simple" or "have no internal structure."
14

3. Sorry Jim, but Datatrieve was not a first order predicate logic language. Containing

procedural structures such as loops and conditionals, it exposed a computationally complete

language to users. That requires at least second order predicate logic. Those extensions of

yours weren't just syntactic sugar. Indeed, those secretaries who learned Datatrieve did

become programmers!

4. Scoring algorithms such as those used in search – including Jim's example of fuzzy pattern

matching – have nothing to do with the particular logical system employed. These are

computations used as input to a decision procedure and can be used to rank hits. That

decision procedure either does or does not return a "hit" – consistent with FPL. Even in

"fuzzy" search, so-called fuzzy logic is typically not used. And just so you know, I

understand fuzzy logic quite well: I knew Lofti Zadeh back in the day, gave an invited talk to

his graduate seminar, published two peer reviewed papers on fuzzy logic, and evaluated it

thoroughly as a deviant logic.

5. I am extremely familiar with Google and its systems. I am a great admirer of what Google

has accomplished, and continues to accomplish, technically. Google does not implement a

logical data model, let alone a general purpose DBMS. It comprises a collection of highly

specialized and optimized databases. Public disclosures show that Google implements a

physical data store with algorithms for managing physical issues (availability, replication,

performance, caching, and so on). Search algorithms (such as those built on the MapReduce

model) require implementation by programmers and do not comprise a query language per

se. Google Search does not return the answer to any knowledge question except by accident:

It merely returns blind hits on search terms. The user must then search through those results

to discover, access, and interpret possible knowledge sources. It is far too easy for the naïve

user to combine bits from multiple hits to conclude meaningless nonsense… and sadly, then

to act on it. Worse, sophisticated programmers and analysts fall prey to the same trap,

providing automated delivery of unsupportable results to managers upon which to make

decisions.

As I suggested in my previous response to Jim, such applications have tremendous value.

They are not, however, representative of logical data models. Of great importance, they

cannot provide physical data independence – their software implementations are strongly

coupled to their physical storage structure.

6. Regarding HISS – Is that a backhanded insult? (grin) No matter. The only sand near my head

is the sandstorm of ill-informed statements of those who understand little of why logic

14

 In "Is the Relational Data Model Spent?", Jim advocated against bounded types, presumably because he wants to

have support for data which can be typed (he wrote "named") later. This is easily handled with a universal type.

© 2014 David McGoveran – All Rights Reserved Page 11

matters. I've studied the properties of hundreds of logical systems over the last 40 years, from

Lukasiewicz (many-valued) to L. E. J. Brouwer to von Neumann and Birkhoff (quantum

logic). I don't think FPL is the be all and end all. I eagerly await an alternative suitable to

database work. But I do know, without a doubt, that FPL is currently the only powerful and

safe approach to a data model
15

 that can enable logical and physical data independence.

Why? Because to achieve that requires a declarative language over a decidable, consistent

logic. First order predicate logic gives us the necessary expressive power and, when

implemented in a real database, every expression on that database has an isomorphic

expression in propositional logic
16

. Thus, we can reason about the database with the power of

FPL while knowing (a) that every query is decidable – it returns a repeatable result, (b) that it

will not give us inconsistent answers, and (c) any knowledge represented in the database is

accessible by that query language.

I'm always been astounded by how often those who would propose using a particular logical

system are incapable of evaluating the properties of those systems and, often, incapable of

given the proposed system a formal definition. They don't elucidate axioms, rules of

inference, or truth valuations, nor do they evaluate the properties of decidability,

completeness, or consistency. They often have no understanding of proof theory or model

theory, yet they pronounce the "power" of their proposed system.

In conclusion, let me reassert my thesis: Jim, you are complaining about physical data storage

and retrieval, not RDM, and you are proposing a physical data storage and retrieval technology

that is not based on any logical model. Without that, all you can know is that you can write some

program to compute any computable function: Power, but no control. In other words, you will

not be able to control or predict data integrity, semantic coherence of query results (witness

Google search!), or any other property relevant to knowledge. And your programs will forever be

tightly bound to specific data structures, storage allocation, and distribution.

A review (or maybe even intense study) of logic and the foundations of mathematics might be in

order. I suggest Gottfried Wilhelm von Leibniz, Charles Saunders Peirce, Gottlieb Frege,

Bertrand Russell, Kurt Godel, Stephen Kleene, Nicholas Rescher, and George Boolos and

Richard Jeffrey, just to start. Undergraduate level courses just won't do. Learn not to confuse the

truth valuation system (including evaluation operators) of an implementation with either the

proof theory or the model theory of a system of logic. And make sure you know what all those

terms mean. To apply all this to database theory, you might want study my old series "Nothing

from Nothing."
17

 It is dense and not even complete, but it will point you in the right direction.

15

 By data model I mean a formal system of data representation, integrity, and manipulation (including query)

specific applications of which become particular interpretations of the model.
16

 Take care how you read this: I am not saying that FPL as used in RDM and propositional logic are identical!
17

 I've been working on an expansion of these articles in the form of a text book. Hopefully, my decease won't prove

to be the final delay!

© 2014 David McGoveran – All Rights Reserved Page 12

Let's get on the same page. Become meticulous in your analysis. Stop dissing RDM (it is not

responsible for your woes), start attacking poor physical data storage and retrieval

implementations (whether in DBMS products or applications), attack the alleged and wrong

DBMS implementations that claim to be relational, and teach people the differences. End users

and programmers alike deserve something far better than they've been given to date.

If you have a wonderful approach to physical data storage and retrieval, fine: convince me of its

benefits and I'll happily support it – programmers need all the help they can get. But don't even

suggest it can achieve any of the goals of RDM (which are not physical). You are smarter than

that. Live up to your past accomplishments.

P.S. Thanks for the kind words regarding my writing, Jim.

